SOLUTIONS

- * Recall that another name for a solution is a "homogenous mixture."
- * Solutions consist of a solute (what is dissolved) and a solvent (what does the dissolving).
- * There are several ways of expressing the concentration of a solution.

Mass Percent (Percent By Mass)

* Formula:

* % by Mass =
$$\frac{Mass \, of \, Solute}{Total \, Mass \, of \, Solution} \times 100$$

- * Usually units of mass are in grams.
- * Example:
- How many grams of a 1.5% NaCl solution are needed to provide 5 grams of NaCl?

$$1.5\% = \frac{5 \text{ grams NaCl}}{\text{Mass of Solution}} \times 100$$

1.5x = 500

Mass of Solution = 333.33 g NaCl

MOLARITY

- * These solutions are usually prepared in volumetric flasks.
- * Rearranging,
- * M × L of solution = moles of solute
- * OR
- * M × L of solution × molar mass of solute = g of solute

* See handout for example problems.

MOLALITY

* Molality (m) =
$$\frac{moles \, of \, solute}{kg \, of \, solvent}$$

- * The solvent is usually water.
- * Example:
- * What is the molality of a solution of 250 g of sucrose $(C_{12}H_{22}O_{11})$ in 600 g of water?
- * Moles of solute = 250 g ÷ 342.23 g/mole = 0.73 moles
- * Molarity (M) = $\frac{0.73 \text{ moles}}{0.600 \text{ kg of solvent}}$ = 1.22 m

MOLAL FREEZING POINT DEPRESSION

- One can predict how much a given amount of solid solute will depress (decrease) the freezing point (t_f) of a liquid by knowing the molal freezing point depression constant (K_f) and the molality of the solution.
- * See Table 14.5 pg. 333 for values.

*
$$\Delta t_f = K_f \times m$$

- * Example:
- * Suppose a solution of 2.35 moles of glucose $(C_6 H_{12} O_6)$ and 1,250 g of acetic acid is prepared. What would the expected freezing point of this solution be?
- * T_f for acetic acid = 16.6°C and $K_f = 3.90°C/m$ (from Table 14.5)
- * The molality of the solution would be:

*
$$m = \frac{moles \ of \ solute}{kg \ of \ solvent} = \frac{2.35 \ moles}{1.25 \ kg \ of \ solvent}$$

*
$$= 1.88 \ m$$

*
$$\Delta t_{f} = K_{f} \times m$$

*
$$= 3.90^{\circ} \text{C/m} \times 1.88 \ m$$

*
$$= 7.33^{\circ} \text{C}$$

- * <u>Note</u>: This is the freezing point change, NOT the freezing point. We must subtract 7.33 $^{\circ}$ C from the original freezing point of 16.6 $^{\circ}$ C.
- * The final answer would then be: $16.6^{\circ}C 7.33^{\circ}C = 9.27^{\circ}C$

MOLAL BOILING POINT ELEVATION

 Similarly, one can predict how much a given amount of solid solute will elevate (increase) the boiling point (t_b) of a liquid by knowing the molal boiling point elevation constant (K_b) and the molality (m) of the solution.

*
$$\Delta t_{b} = K_{b} \times m$$

* See Table 14.5 pg. 333 for values.