CHEM 101: CHAPTER 14: SOLUTIONS pgs. 316-346

SOLUTIONS

* Recall that another name for a solution is a "homogenous mixture."
* Solutions consist of a solute (what is dissolved) and a solvent (what does the dissolving).
* There are several ways of expressing the concentration of a solution.

Mass Percent (Percent By Mass)

* Formula:
* $\%$ by Mass $=\frac{\text { Mass of Solute }}{\text { Total Mass of Solution }} \times 100$
* Usually units of mass are in grams.
* Example:
* How many grams of a $1.5 \% \mathrm{NaCl}$ solution are needed to provide 5 grams of NaCl ?

$$
\begin{gathered}
1.5 \%=\frac{5 \text { grams } \mathrm{NaCl}}{\text { Mass of Solution }} \times 100 \\
1.5 \mathrm{X}=500
\end{gathered}
$$

Mass of Solution $=333.33 \mathrm{~g} \mathrm{NaCl}$

MOLARITY

* These solutions are usually prepared in volumetric flasks.
* Rearranging,
* $M \times L$ of solution $=$ moles of solute
* OR
* $M \times L$ of solution \times molar mass of solute $=g$ of solute
* See handout for example problems.

MOLALITY

$$
\text { * Molality }(\mathrm{m})=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}
$$

* The solvent is usually water.
* Example:
* What is the molality of a solution of 250 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in 600 g of water?
* Moles of solute $=250 \mathrm{~g} \div 342.23 \mathrm{~g} / \mathrm{mole}=0.73$ moles
* Molarity $(M)=\frac{0.73 \text { moles }}{0.600 \mathrm{~kg} \text { of solvent }}=1.22 \mathrm{~m}$

MOLAL FREEZING POINT DEPRESSION

* One can predict how much a given amount of solid solute will depress (decrease) the freezing point (t_{f}) of a liquid by knowing the molal freezing point depression constant (K_{f}) and the molality of the solution.
* See Table 14.5 pg .333 for values.

$$
* \Delta t_{f}=K_{f} \times m
$$

* Example:
* Suppose a solution of 2.35 moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and 1,250 g of acetic acid is prepared. What would the expected freezing point of this solution be?
* T_{f} for acetic acid $=16.6^{\circ} \mathrm{C}$ and $\mathrm{K}_{\mathrm{f}}=3.90^{\circ} \mathrm{C} / \mathrm{m}$ (from Table 14.5)
* The molality of the solution would be:

$$
\begin{aligned}
& * \mathrm{~m}=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{2.35 \text { moles }}{1.25 \mathrm{~kg} \text { of solvent }} \\
& *=1.88 \mathrm{~m}
\end{aligned} \quad \begin{aligned}
* \Delta \mathrm{t}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \times \mathrm{m} \\
* & =3.90^{\circ} \mathrm{C} / \mathrm{m} \times 1.88 \mathrm{~m} \\
* \quad & =7.33^{\circ} \mathrm{C}
\end{aligned}
$$

* Note: This is the freezing point change, NOT the freezing point. We must subtract $7.33{ }^{\circ} \mathrm{C}$ from the original freezing point of $16.6^{\circ} \mathrm{C}$.
* The final answer would then be: $16.6^{\circ} \mathrm{C}-7.33^{\circ} \mathrm{C}=9.27^{\circ} \mathrm{C}$

MOLAL BOILING POINT ELEVATION

* Similarly, one can predict how much a given amount of solid solute will elevate (increase) the boiling point (t_{b}) of a liquid by knowing the molal boiling point elevation constant (K_{b}) and the molality (\mathbf{m}) of the solution.

$$
* \Delta t_{b}=K_{b} \times m
$$

* See Table 14.5 pg .333 for values.

