CHEMISTRY 101 NOTES: CH. 7: QUANTITATIVE COMPOSITION OF COMPOUNDS pgs. 121-142

The Mole

A mole is a number used to measure a given quantity of a substance (element or compound). This number represents a certain amount of atoms, molecules, or ions and is expressed in one of the following ways:
1.1 Mole = Avagadro's Number of atoms, molecules, formula units, or ions = 6.022×10^{23} atoms, molecules, formula units, or ions. A humungous number!

2. 1 Mole $=$ the atomic mass (weight) of an element (from the

 Periodic Table, see number below symbol.)The atomic weight can be used to convert directly from grams to moles of a substance and vice versa.

Example 1: 10.1 g of $\mathrm{Na}=$? moles Na
Using the atomic weight (mass) of Na (round to nearest hundredths place),
$10.1 \mathrm{~g} \mathrm{Na} x 1$ mole $\mathrm{Na} / 23.00 \mathrm{~g} \mathrm{Na}=0.44$ moles Na

OR to go from moles to grams use the reciprocal
Example 2: 0.25 moles $\mathrm{Na}=$? g
0.25 moles $\mathrm{Na} \times 23.00 \mathrm{~g} / 1 \mathrm{~mole} \mathrm{Na}=5.75 \mathrm{~g} \mathrm{Na}$
3. Going from moles to atoms, molecules, formula units, or ions: USE AVOGADRO'S NUMBER.

EXAMPLE 3: 2.2 moles $\mathrm{Na}=$? atoms Na 2.2 moles $\mathrm{Na} \times\left(6.022 \times 10^{23}\right)$ atoms $\mathrm{Na} / 1 \mathrm{~mole} \mathrm{Na}=$

OR to go from atoms to moles, use reciprocal

Example 4: $\quad 5.59 \times 10^{23}$ atoms $\mathrm{Na}=?$ moles of Na
(5.59 x 10^{23}) atoms $\mathrm{Na} \times 1 \mathrm{~mole} \mathrm{Na} / 6.022 \times 10^{23}$ atoms =

THE SAME PROCEDURE IS USED FOR MOLECULES, FORMULA UNITS, OR IONS.

DETERMINING MOLAR MASS (Formula Weight or Formula Mass)

1 mole = the mass of each element (from atomic mass) in a given substance added together.

NOTE: The subscript indicates how many of each atom are present and how many times to multiply each atomic mass by.

Example 5: Determine the molar mass of sucrose (table sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$)

Number of C atoms $X 12.01$ (atomic mass) $=12 \times 12.01 \mathrm{~g}$
$=144.12 \mathrm{~g} \mathrm{C}$
Number of H atoms $\times 1.01=22 \times 1.01 \mathrm{~g}=22.22 \mathrm{~g} \mathrm{H}$
Number of O atoms $\times 16.00=11 \times 16.00 \mathrm{~g}=176.00 \mathrm{~g} \mathrm{O}$

TOTAL $=144.12 \mathrm{~g}+22.22 \mathrm{~g}+176.00 \mathrm{~g}=342.34 \mathrm{~g} / \mathrm{mole}$

This is the molar mass of sucrose.

Example 6: Calculate the molar mass of adamite (alkaline zinc arsenate, $\mathrm{Zn}_{2}\left(\mathrm{AsO}_{4}\right) \mathrm{OH}$.
Number of Zn atoms $=2$, mass of $\mathrm{Zn}=2 \mathrm{x} 65.39 \mathrm{~g}=130.78 \mathrm{~g}$
Number of As atoms $=1$, mass of $\mathrm{As}=1 \times 74.92 \mathrm{~g}=74.92 \mathrm{~g}$
Number of O atoms $=5(4+1)$, mass of $\mathrm{O}=5 \times 16.00 \mathrm{~g}=80.00 \mathrm{~g}$
Number of H atoms $=1$, mass of $\mathrm{H}=1 \times 1.01 \mathrm{~g}=1.01 \mathrm{~g}$

TOTAL=130.78 g+74.92 g+80.00 g+1.01 g=286.71 g/mol

PERCENT COMPOSITION: SEE HANDOUT.

PERCENT COMPOSITION FROM EXPERIMENTAL DATA 2 Steps: First, given experimental data, determine total mass of all elements present. Next, divide each mass by the total mass from step 1 and multiply by 100.

Example 7: When heated with 3.35 g of Zn , 1.65 g of S burns rapidly and completely to form zinc (II) sulfide. Calculate the \% composition of this compound.

Step 1: Total mass = $3.35 \mathrm{~g} \mathrm{Zn}+1.65 \mathrm{~g} \mathrm{~S}=5.00 \mathrm{~g}$ of zinc (II) sulfide

Step 2: \%Zn = 3.35 g Zn / 5.00 g Zn X $100=67.09 \%$ Zn $\%$ S = $100-67.09=32.91 \%$ S

CHECK: $\%$ Zn $+\%$ S = 100?, 67.09% + 32.91\% = 100 ?
YES! Must be 100\% to obey Law of Conservation of Mass.

EMPIRICAL FORMULAS VS. MOLECULAR FORMULAS: SEE HANDOUT.

